
March 1998 The Delphi Magazine 41

Delphi Meets COM: Part 4
by Dave Jewell

By now, you should be feeling
very relaxed about writing

context menu handlers. Last time
round, I said I’d mention some of
the other types of COM-related
shell extensions that are available.
In the first part of this month’s arti-
cle, I’ll do just that and then we’ll go
on to discuss dispatch interfaces
(commonly called ‘dispinterfaces’)
which form one of the foundation
stones of OLE Automation.

A Shell Extension Roundup
Context menu handlers represent
only one specific type of shell
extension. Once you’re familiar
with the mechanics of writing one
type of shell extension, you’ll find
that writing other types of exten-
sion isn’t much different: it’s really
a matter of understanding what
interfaces must be exposed by a
particular type of extension, and
what methods are significant.

I’ll run through a few of the other
types of shell extension which
Windows Explorer supports.

Copy Hook Handlers
A copy hook handler is invoked by
the shell whenever the user tries to
copy, delete, rename or move a
folder. Somewhat bizarrely, copy
hook handlers are also invoked
when a printer changes status, as
when renaming a printer or modi-
fying the port assigned to a printer.
Using a copy hook handler, you can
allow or disallow the operation
from taking place. You can think of
this as being somewhat like Del-
phi’s OnClose event through which
an application can allow or prevent
a form from being closed.

As with all shell extensions, a
copy hook handler needs to have
appropriate entries in the system
registry in order to work properly.
For folders, copy hook handlers
are registered under the following
key:

HKEY_CLASSES_ROOT\directory\
shellex\CopyHookHandlers

while for printers you’d replace
shellex in the above registry path
with printers.

Copy hook handlers are very
easy to implement (even by
Delphi’s standards!) for two rea-
sons. Firstly, they don’t need to
implement the IShellExtInit inter-
face which (you’ll remember) is
used by context menu handlers to
determine the file that’s been
right-clicked. Secondly, the only
interface they need to implement,
ICopyHook, has exactly one method
called CopyCallBack. Note that
when I say an interface has only
one method, you should under-
stand that this is in addition to the
three standard methods required
by IUnknown. The existence of these
methods should always be taken as
read. Since we’re in the fortunate
position of programming COM
interfaces using Delphi, we often
don’t have to worry about these
three interfaces at all. For example,
see last month’s context menu
handler example.

Listing 1 shows what the Copy-
CallBack method looks like in
Delphi terms.

Briefly, the Wnd parameter is an
API level Windows handle that
should be used as a parent handle
by any dialogs which need to be
displayed by the extension. The
wFunc parameter tells the copy
hook handler what operation is
being proposed (eg fo_Delete to
delete the folder, fo_Move to
rename the folder and so on). The
wFlags parameter is a combination
of informational flags that primar-
ily give more information to the
extension about the context of the
operation. For example, is a prog-
ress dialog being displayed? Are
individual file names being shown
in the progress box? The shell
extension can determine this infor-
mation by looking at the wFlags

value. As you’d expect, pszSrcFile
and dwSrcAttribs contain
pathname and file attribute infor-
mation for the source path,
whereas the remaining two
parameters contain the same
information for the destination
path. Finally, the function result
returned by CopyCallBack must be
IDYes, IDNo or IDCancel, to indicate
whether or not the operation may
proceed. IDCancel aborts the
entire operation whereas IDNoonly
gives the thumbs down to the cur-
rent folder. Bear in mind that the
user might potentially be dragging
multiple folders in one go.

It’s worth bearing in mind that
multiple copy hook handlers can
be installed. This means that when
the user attempts a folder move,
delete, rename or copy, the shell
will attempt to call all registered
copy hook handlers in order to
determine whether or not an
operation can proceed. Obviously,
as soon as one handler has
returned a value of IDCancel then
the show is over: it’s ‘all in favour’
or nothing. If you want to see an
example of a copy hook handler
written in Delphi, Borland include
one in the Demos\ShellExt direc-
tory in a standard Delphi 3.0
installation.

Icon Handlers
Another type of shell extension is
the icon handler. Using icon han-
dler shell extensions, you can
modify the icon that Windows
Explorer uses to display files. At
this point, you might be thinking
‘big deal, I can do that by just
changing a registry entry.’ How-
ever, the icon handler has the flexi-
bility to display files with different
icons even when the files are of the
same type.

function CopyCallback(Wnd: hWnd; wFunc, wFlags: UINT; pszSrcFile: PAnsiChar;
dwSrcAttribs: DWORD; pszDestFile: PAnsiChar; dwDestAttribs: DWORD):
UINT; stdcall;

➤ Listing 1



42 The Delphi Magazine Issue 31

To see how this works, you need
to understand how the Explorer
normally associates specific icons
with different file types. As an
example, take a look at
HKEY_CLASS_ROOT\DelphiProject in
the Windows Registry and you’ll
see that there’s a sub-key called
DefaultIcon. The value of this
sub-key (at least on my system) is:

C:\Delphi 3.0\Bin\Delphi32.EXE,4

This information tells Explorer
that the DelphiProject file type
(which is defined elsewhere as a
.DPR file) should be displayed using
icon number 4 from the IDE’s
executable file. Sure enough, if you
use a resource viewing tool to
examine the icons in DELPHI32.EXE,
you’ll find that icon number 4
(counting from zero) is the icon for
.DPR files (see Figure 1).

In order to change the Registry
so as to use a custom icon handler,
simply replace the value of the
DefaultIcon key with the string %1.
At the same time, to install the icon
handler properly, you’d need to
add a Registry entry of this form:

HKEY_CLASSES_ROOT\DelphiProject
\shellex\IconHandler

The value of this entry will be a
GUID which corresponds to the
installed icon handler. Likewise, in
the normal way, you’d need to add
this GUID to the CLSID area of the
registry with an InProcServer entry
indicating where the icon handler
DLL is located.

Icon handlers have to implement
two different interfaces. The first
interface, IExtractIcon, deals with
the nitty-gritty of telling the Shell
what icon to display. It implements
two methods, GetIconLocation and
ExtractIcon. Take care not to con-
fuse the latter with a Windows API
call of the same name, by the way.
Which of these two methods you
use depends on whether or not
your icons are located inside a
Windows executable or DLL. If they
are, then you use GetIconLocation
to tell the Shell where the icon is. If
not, then you use ExtractIcon to
give an API-level icon handle
directly back to the Shell. Listing 2

➤ Figure 1: In the system registry, the DefaultIcon entry associated
with a file type is used to specify the name of an executable file
and the index of the desired icon. It's possible to change this value
to '%1' and associate an icon handler with the file type, displaying
different icons on a per-file basis.

function GetIconLocation (uFlags: UINT; szIconFile: PAnsiChar; cchMax: UINT:
out piIndex: Integer; out pwFlags: UINT): hResult; stdcall;

➤ Listing 2
shows the Object Pascal declara-
tion for the GetIconLocation
method.

Are you wondering what those
interesting-looking out keywords
are? This is something that I
haven’t covered yet, but we’ll be
examining in detail later. For now,
just think of an out parameter as
being similar to a var parameter
except that it only works one way.
In this case, the two out parame-
ters are results provided by the
GetIconLocationmethod to the rou-
tine that called it.

The first parameter, uFlags, tells
the shell extension whether the
requested icon is for display in a
shell folder (gil_ForShell) or for
displaying the icon of an open
folder (gil_OpenIcon). In return, the
shell extension fills the buffer
pointed to by szIconFile with the
full pathname of a .EXE file or DLL
which contains the icon. The
cchMax field is used to indicate the
maximum size of this buffer. In
addition to this, the piIndex
parameter is used to tell the shell
which icon in the file should be
used while the pwFlags parameter
passes additional flags to the shell.
Amongst other things, these flags
indicate whether or not all files of
the same type should use the same

icon, or whether each file can have
its own icon.

But wait, there seems to be
something vital missing from this
interface. How does the icon han-
dler know what file is being refer-
enced? Well, you’ll remember I
said that an icon handler must
implement two interfaces. The
first, IExtractIcon, is what we’ve
been discussing so far. The other
interface is IPersistFile. As the
name suggests, IPersistFile
relates to the storing of persistent
data in disk files. The bad news is
that this interface implements
quite a number of different meth-
ods. The good news is that only
one of the methods, Load, is of any
concern to an icon handler, the
rest can all be stubbed out.

Property Sheet Handlers
One of the most interesting types
of shell extension is the property
sheet handler. My computer has a
100Mb ZIP drive (highly recom-
mended!) which I use for backup
and off-lining data that I won’t be
using for a while. In Figure 2, you
can see how the IOMega software
makes good use of property sheet
handlers to seamlessly add ZIP



March 1998 The Delphi Magazine 43

➤ Figure 2:
It's not difficult
to think of good
uses for the
property sheet
handler type of
Shell extension.
Here, IOMega
have added no
less than four
new pages to
this property
sheet dialog.

drive specific property pages to
the Explorer, all the pages marked
with a red tab are custom property
pages.

The property sheet handler
interface allows you to add custom
property pages not only to vol-
umes, but also to folders and differ-
ent file types. To create your own
property sheet handler, you need
to create a COM object which
implements the IShellExtInit and
IShellPropSheetExt interfaces like
this:

TPropPageHandler =
class(TComObject,
IShellExtInit,
IShellPropSheetExt)

As with other shell extensions
we’ve seen, the IShellExtInit han-
dler is used to pass the name of the
file to the shell extension while the
IShellPropSheetExt interface deals
with the specifics of property
sheet management.

Time for a mini-rant: why did
Microsoft do things in this kack-
handed way? I accept that the
Explorer needs a consistent inter-
face for passing filename informa-
tion to an extension, but it would
have made a lot more sense to
define an abstract IShellExtension
interface with one or more meth-
ods for filename acquisition. Shell
extension interfaces such as
IShellPropSheetExt would then
derive from this common ancestor,
adding any extension specific

methods that are required. As
we’ve seen, implementing multiple
interfaces in a COM object is easy
with Delphi 3.0, but for C++ devel-
opers a lot of extra aggregation
glue-code is needed. They haven’t
even been consistent: Icon han-
dlers need to implement IPersist-
File just to get the file name! OK, I
feel better now.

The IShellPropSheetExt inter-
face defines two methods,
ReplacePage and AddPages. The
former is never used by property
sheet handlers (it’s actually used
by Control Panel extensions, allow-
ing standard controls panel pages
to be replaced by custom ones)
and it’s sufficient to return a value
of E_NotImpl to indicate that it’s not
implemented. More interesting is
the AddPages method which is
defined like this:

function AddPages(lpfnAddPage:
TFNAddPropSheetPage;
lParam: LPARAM): hResult
stdcall;

As the name suggests, this method
can be used to add multiple pages
to a property sheet, as in my exam-
ple of the ZIP drive Shell exten-
sions. The first parameter is of type
TFNAddPropSheetPage and is defined
in the COMMCTRL.PAS file:

TFNAddPropSheetPage = function(
hPSP: HPropSheetPage;
lParam: Longint): BOOL

stdcall;

In a nutshell, the AddPages method
has to create one or more property
pages using the CreateProperty-
SheetPage API routine. For each
property sheet that it’s created, it
calls the lpfnAddPage hook sup-
plied by the Shell. This adds the
property sheet to the list of inter-
nal property sheets maintained
inside the Shell. When calling
through the lpfnAddPage hook, it’s
vitally important to set the second
parameter of the call to the lParam
value which was supplied to Add-
Pages itself. Amongst other things,
this helps the Shell to keep track of
which property pages are associ-
ated with which property sheet
handler, bearing in mind that you
can have multiple property sheet
handlers registered for a single file
type. It’s also important that if the
call through the lpfnAddPage hook
fails (indicated by a False function
result) then AddPages code should
destroy the property sheet and
exit.

In theory, creating property
sheet handlers should be nice and
easy with Delphi. In practice, I’ve
left it as an exercise for the reader!
The big problem here is the way in
which Microsoft have imple-
mented property sheets them-
selves. Effectively, each property
sheet page is its own little dialog,
complete with dialog message han-
dler and dialog template resource
to define the number, size, posi-
tion and type of the various dialog
controls on the page. In other
words, if you want to have a seri-
ous crack at writing property sheet
handlers with Delphi, you’ll have
to abandon the cosy RAD world of
forms and VCL components and
journey into the relatively primi-
tive jungle of barefoot API-level
dialog implementation. One possi-
ble way around this would be to
just put a push-button on the prop-
erty sheet, and point that to some
code which fires up a native DLL
dialog. However, this obviously
isn’t an ideal solution. A much
better way would be to program-
matically transplant one or more
VCL components onto a property
page. I imagine that a perusal of the
VCL source code relating to TTab-
Sheet and TPageControl would



44 The Delphi Magazine Issue 31

provide some useful ideas, maybe
I’ll take a look at this issue in a
future article. For those adventur-
ous souls who want to take things
further, I’ve included the file PROP-
ERTYSHEET.ZIP on this month’s
disk. This contains source for a
public-domain property sheet han-
dler written in Delphi. Do bear in
mind that I haven’t tested this code
myself and it was also written for
Delphi 2.0, meaning that you can
make considerable simplifications
to the PROPERTIES.PAS file if you’re
working with Delphi 3.0.

Introducing The Dispinterface
Microsoft soon realised that,
deeply wonderful though COM
was, there were shortcomings with
the plain-vanilla COM interface
that we’ve been discussing up to
this point. These shortcomings
were particularly significant when
it came to using a simple program-
ming language such as Visual
Basic.

Back in those early days, the
Microsoft developers were faced
with the prospect of writing one set
of wrapping code to enable Visual
Basic to use one COM interface,
another set of wrapping code to get
it to work with another interface,
and so on. They obviously didn’t
want to spend the rest of their lives
writing wrapping code for all the
different COM interfaces and
adding it to the Visual Basic run-
time library! Neither did users of
Visual Basic want to have to keep
waiting for a new release which
implemented the COM interfaces
they were interested in using.

What was needed was a way for
Visual Basic to work with a COM
interface that it hadn’t previously
encountered. If you think back to
last month’s simple OLE Automa-
tion example, you’ll realise that
this capability is an absolute
necessity. Neither Delphi’s devel-
opers nor the creators of Visual
Basic know what Automation calls
you’re going to make from your
program, nor what Automation
servers you’re going to communi-
cate with, but everything has to
work as advertised.

The solution to this problem was
the Dispatch Interface, or for short,

IDispatch = interface(IUnknown)
['{00020400-0000-0000-C000-000000000046}']
function GetTypeInfoCount (out Count: Integer): Integer; stdcall;
function GetTypeInfo (Index, LocaleID: Integer; out TypeInfo): Integer;
stdcall;

function GetIDsOfNames (const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): Integer; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer): Integer;
stdcall;

end;

➤ Listing 3
dispinterface. The dispinterface
lies at the heart of OLE Automation
and ActiveX technology and is
based around an interface called
IDispatch.

Listing 3 might look a bit over-
whelming at first sight, and proba-
bly at second sight too! For
starters, IDispatch is based around
the same IUnknown interface that we
all know and love; it has the same
three standard IUnknown methods
which all COM objects support.
The key method here is Invoke. It’s
this method which forms a ‘back-
-door’ into the many other meth-
ods which the interface might
support. Up until now, all the meth-
ods on a particular interface have
been explicitly declared: with
IDispatch, the above interface (or
rather, another interface derived
from it) might potentially support
dozens of different methods, all of
which are available through this
Invoke back-door.

Confused? Think of it like this: by
writing Visual Basic in such a way
that it could understand and talk to
an IDispatch interface, they imme-
diately got the benefit of having VB
able to talk to any dispinterface
that anyone might write. In order
to call one of these hidden meth-
ods, you need to have its ID, or
DispID, as they’re usually called.

Just as Invoke represents the
back-door through which we can
call one of many different interface
methods, so the GetIDsOfNames
method represents a kind of ‘tel-
ephone directory’ which enables a
caller to get an ID for each and
every method that’s supported by
the interface.

So, imagine you want to call a
method called GetDirCount. First,
you call GetIDsOfNames to deter-
mine the dispatch ID for the Get-
DirCount method. Then, you would
call the Invoke method to actually
make the call. Get it? Telephone

directory? Make the call? Oh,
never mind...

It’s natural to ask why you can’t
directly specify the required
method name as a parameter to
Invoke. The reason, of course, is
one of speed and efficiency. The
last thing the COM code needs to
be doing is string comparisons
each and every time a method is
called. Using GetIDsOfNames, you
can retrieve a DispIDonce and then
call that method many times. In
fact, the GetIDsOfNames method is
written in such a way that you can
use it to retrieve multiple DispIDs
for multiple methods all in one go.

If you look at Figure 3 you’ll see
the layout of the vtable for the
IDispatch interface. Including the
three IUnknown methods, there are
a total of seven methods and that
doesn’t change. Thus, it’s rela-
tively easy to write the runtime
library code to interface the Visual
Basic interpreter to an IDispatch
interface. IDispatch is written in
such a way that the Invoke call can
accept a variable number of
arguments, the Params parameter
is essentially a pointer to a data
structure which contains a vari-
able number of arguments.

If you read my previous Beating
the System columns on Delphi code
generation (Issues 16 and 17,
December 1996 and January 1997),
you’ll know that the Delphi com-
piler uses a very similar technique
to implement routines such as
Format which appear to take a vari-
able number of parameters. At the
grass roots level, what gets passed
to the Format routine is a pointer to
a data structure which is built at
run-time immediately before the
call. This data structure comprises
a variable number of entries, each
of which is tagged with a byte
which indicates the type of the



March 1998 The Delphi Magazine 45

entry such as long integer, string,
or whatever. In practice, the
parameter-passing technique used
by IDispatch is more complex than
the Format system because OLE

Automation supports both named
and optional arguments.

While on the subject of parame-
ter passing, it’s worth pointing out
that by using IDispatch, you get the

side benefit of automatic parame-
ter marshalling.

Marshalling is something that
we haven’t discussed up to now.
Put simply, marshalling is the
process whereby COM transfers
arguments between the processes
on either side of a COM interface.
In the simplest possible case, a
COM server will be an in-process
server, ie a DLL. The shell exten-
sions we’ve been discussing up to
now are in-process servers called
by the Windows Explorer. Because
an in-process server lives in the
address space of its client, little or
no marshalling is required in these
circumstances because both
client and server can directly
access the same memory.

In the case of an out of process
server, such as an OLE Automation
server, things are more complex.
Effectively, you’ve got one applica-
tion talking to another and, as you
know, Windows does its best to
put a brick wall between different
processes [and some application
software I use does its best to batter
down that wall...! Ed]. In the case of

➤ Figure 3: This diagram (from the online help) shows the layout of a
vtable when using the IDispatch interface. No matter how may
methods hang off this interface, there will only be seven vtable
entries, making it easy to code for this interface. However, see next
month's explanation of dual interfaces for a scheme which gives the
best of both worlds…



46 The Delphi Magazine Issue 31

Windows NT, this wall is several
feet thick, electrified and has
broken glass along the top! This is
where marshalling comes into its
own. The marshalling code has to
take the client arguments, package
them up and copy them into the
address space of the server. After
the actual target method has been
called, any results of the call then
have to be packaged up and copied
back into the address space of the
client. As you’d expect, similar
things have to happen with DCOM
(Distributed COM) except that
now, the marshalling takes place
between different machines on a
network.

Delphi Support
For Dispatch Interfaces
Microsoft are not, forgive me for
being blunt, noted for their ability
to create straightforward, easy to
use programming interfaces. If you
compare a Delphi application with
the same thing written in C/C++ to
use the Windows API, you’ll proba-
bly laugh your socks off wondering
why anybody should want to
program that way.

Likewise, even an MFC-based
application (MFC is Microsoft’s
relatively crude, rather lower level,
C++ equivalent of the VCL library)

IAmbientDispatch = dispinterface
['{00020400-0000-0000-C000-000000000046}']
property BackColor: Integer dispid DISPID_AMBIENT_BACKCOLOR;
property DisplayName: WideString dispid DISPID_AMBIENT_DISPLAYNAME;
property Font: IFontDisp dispid DISPID_AMBIENT_FONT;
property ForeColor: Integer dispid DISPID_AMBIENT_FORECOLOR;
property LocaleID: Integer dispid DISPID_AMBIENT_LOCALEID;
property MessageReflect: WordBool dispid DISPID_AMBIENT_MESSAGEREFLECT;
property ScaleUnits: WideString dispid DISPID_AMBIENT_SCALEUNITS;
property TextAlign: Smallint dispid DISPID_AMBIENT_TEXTALIGN;
property UserMode: WordBool dispid DISPID_AMBIENT_USERMODE;
property UIDead: WordBool dispid DISPID_AMBIENT_UIDEAD;
property ShowGrabHandles: WordBool dispid DISPID_AMBIENT_SHOWGRABHANDLES;
property ShowHatching: WordBool dispid DISPID_AMBIENT_SHOWHATCHING;
property DisplayAsDefault: WordBool dispid DISPID_AMBIENT_DISPLAYASDEFAULT;
property SupportsMnemonics: WordBool dispid DISPID_AMBIENT_SUPPORTSMNEMONICS;
property AutoClip: WordBool dispid DISPID_AMBIENT_AUTOCLIP;

end;

➤ Listing 4
is both larger in source terms and
far more hieroglyphic than its
Delphi equivalent.

But Microsoft really went to
town with OLE. Look back at the
Invoke call we saw earlier, eight
parameters needed for each and
every call to Invoke! Fortunately,
this series is all about COM pro-
gramming from a Delphi perspec-
tive and you should be really
thankful for that! Borland have put
a lot of work into making COM pro-
gramming much easier than it
would otherwise be and we’re
going to finish off this month’s
instalment by looking at some of
the ways in which IDispatch ‘awar-
eness’ has been built into the
compiler.

For starters Delphi allows you to
perform compile time binding

rather than late binding on IDis-
patch methods. Let me explain;
earlier I said that in order to call a
method on a dispinterface, the
controller (in Automation speak,
the client is generally referred to
as the controller) first had to get
its DispID. This is called late
binding or runtime binding,
because the client doesn’t bind to
a particular method or property
until run-time. Although this is
very flexible, it isn’t as efficient as
it could be because of the over-
head of calling GetIDsOfNames to
obtain the necessary DispIDs. In
many cases, Delphi eliminates this
overhead by allowing you to bind
to methods at compile time. The
code in Listing 4 shows how it
works.

This interface, IAmbientDispatch,
is one of the dispinterfaces that are
used in the implementation of
ActiveX controls. As you can see, it
implements a set of properties,
some of which will have names
that are familiar to you.

What might not be so familiar is
the reserved keyword dispinter-
face at the beginning of the decla-
ration and the dispid keyword
associated with each property.
The identifiers following each of
these keywords are simply
numeric constants. For example,
the identifier DISPID_AMBIENT_BACK-
COLORhas a value of -701. By associ-
ating the names of known DispID
values with each property or
method in this way, it becomes
unnecessary to call the GetIDsOf-
Names routine at runtime, the com-
piler can simply generate code
which references a specific DispID
directly. This being the case, it

➤ Figure 4: If you use the type library editor in Delphi 3.0 to browse
the type libraries of existing files then be careful, because it has a
habit of modifying the existing type library: see the warning
messages at the bottom of the window.



March 1998 The Delphi Magazine 47

allows you to call dispinterface
methods more quickly than you
could otherwise. Borland refer to
this technique as ID binding
because, effectively, you’re bind-
ing your code to specific ID
numbers at compile time.

This raises the question of
where these DispIDs come from. Is
it necessary to laboriously call
GetIdsOfNames on an interface in
order to determine all the DispID
numbers to plug into a declaration
like that above? Thank goodness,
the answer is no. It’s at this point
that we need to talk about type
libraries.

A type library is essentially a
chunk of binary data which encap-
sulates all the details of interfaces,
methods, arguments and so on
that are associated with a particu-
lar COM server. Delphi can read
type libraries and automatically
generate a Pascal definition of the
associated interfaces, complete
with those all-important DispID
numbers. Type libraries can exist
as ‘stand-alone’ files, or be com-
piled into the associated COM
server as a resource. If you use
your favourite resource editor to
open up a .OCX control (for
example) you’ll see it contains a
resource of type TYPELIB. This
contains all the type information
associated with the control.

Old fashioned development
tools require you to use a some-
what baroque interface descrip-
tion language (IDL) to create an
interface definition. This is then
run through a special type of com-
piler which spits a type library out
the other end. Happily, we don’t
need to bother with any of that
nonsense: Delphi has a built in type
library editor which can open and
edit type libraries directly,
whether they be stand-alone or
included into COM server executa-
bles. If you want to try out the
Delphi type library editor for your-
self, select File | Open from the
Delphi IDE, specify Type Library
from the drop-down file filter
combo-box and then find yourself a
likely looking OCX control.

One of my favourites is the
MSO97.DLL which comes with MS
Office97, but be sure to say “No”

when it asks you if you want to save
any changes you’ve made!

Having established that Delphi is
the bee’s knees as far as COM pro-
gramming is concerned, I need to
inject some balance by pointing
out that there are some limitations
to dispinterfaces. The major limita-
tion is on the allowable types of
parameters that can be passed
across a dispinterface. According
to the Borland documentation,
there are 13 basic types that can be
passed across a dispinterface.

This, incidentally, is the primary
reason why Borland’s so-called
“One-Step” ActiveX technology
generally involves a few more
steps than you might have
expected. In other words, you can’t
just take any old VCL control,
auto-magically turn it into an
ActiveX control and expect it to
wind up with exactly the same set
of properties, events and methods
that it had inside the Delphi IDE.
For example, any properties, meth-
ods and events which involve
user-defined types won’t make it
through the One-Step process. For

a fuller discussion of this topic,
check out the chapter on ActiveX
control conversion in Ray Konop-
ka’s new Delphi 3 Component
Programming book.

Conclusions
Last month you got some working
code to play with, this month was
mostly theory. Well, you have to
take the rough with the smooth!
Next month, I’ll be going into more
detail about how Borland have
made life easier for you by encap-
sulating a lot of OLE Automation
grunt code into easy to use
classes. We’ll also be rolling up our
sleeves and examining how to use
build OLE Automation capabilities
into your own programs.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
Dave@HexManiac.com.

What have you been missing?
In-depth reviews of these software development tools (and others too):

OnGuard, Merlin, Help authoring, data-aware component libraries,
Power++, Visual SlickEdit, Visual Basic, JBuilder, C++Builder, ActiveListBar,

SoftSentry; plus book reviews, news and comment.

Where? Developers Review of course
Check www.itecuk.com for more details and call us

on +44 (0)181 249 0354 to start your subscription today!


	A Shell Extension Roundup
	Copy Hook Handlers
	Icon Handlers
	Property Sheet Handlers
	Introducing The Dispinterface
	Delphi Support For Dispatch Interfaces
	Conclusions

